
Rendering Gaussian Splats with Ray-Tracing

Alex Lin
Department of Electrical Engineering

Stanford University
alexlin0@stanford.edu

Meijin Li
Department of Electrical Engineering

Stanford University
meijin@stanford.edu

Yvette Lin
Department of Computer Science

Stanford University
yvelin@stanford.edu

Abstract

We introduce a novel ray-tracing method optimized for
real-time rendering of 3D Gaussian splats. Diverging
from the rasterizer of the 3DGS paper [5], we utilize di-
rect ray tracing on 3D Gaussians rather than projecting
them into 2D space. Our methodology focuses on comput-
ing Gaussian intersections using ray tracing and Bound-
ing Volume Hierarchies (BVH) and refining 3D Gaussian
models through gradient-based retraining. Innovations in
this framework include the application of ray tracing for
3D Gaussian scene representations and the implementation
of hardware-accelerated optimization. By conducting per-
formance experiments on two ray-tracing based rendering
methods we developed using CUDA and Nvidia Optix 8.0
respectively, we find that hardware-accelerated ray tracing
is able to achieve comparable performance to a rasterizer
when rendering 3D Gaussian splats in scenes containing
more Gaussians but relatively fewer pixels to be rendered.
We additionally demonstrate the preliminary feasibility of
optimizing 3D Gaussian splats using our renderer by train-
ing scenes from scratch and comparing the visual quality to
the rasterizer baseline.

1. Background and Setup

This project is focused on developing a high-
performance raytracer designed to manage scenes depicted
through 3D Gaussian splats, building upon the foundational
work of Barron et al. [5]. While the original paper imple-
mented a technique to project 3D Gaussians into 2D, our
approach diverges by employing ray tracing directly on the
3D Gaussian objects. This methodological shift is intended
to show that it is feasible to implement ray tracing for 3D

Gaussian splats.
The project focuses on two main parts: rendering and

scene representation training. During the rendering phase,
we employ 3D Gaussian splats scene representations to con-
struct BVH and execute ray tracing. Subsequently, we con-
duct a backward pass to compute gradients directly within
the 3D space using CUDA C++ compute shaders. This pro-
cess allows for retraining and refinement of the 3D scene
representations, enhancing the model’s accuracy and per-
formance.

From the outset, our project’s objective was to explore
the feasibility of using ray-tracing as a technique for ras-
terizing Gaussian splats. The principal question guiding
our research was whether a raytracer, designed for real-time
rendering with 3D Gaussian splats, could achieve compet-
itive rendering speed and visual quality compared to con-
ventional rasterization techniques, within the limitations of
current GPU technology.

2. Related Work

3D Reconstruction. 3D reconstruction is a crucial do-
main in computer vision and graphics, characterized by a
variety of methods to accurately and efficiently represent
scenes. Point clouds, among the earliest forms of 3D rep-
resentation, offer a direct yet sparse depiction of scene ge-
ometry. Techniques such as Structure-from-Motion (SfM)
[10] and Multi-View Stereo (MVS) [3] have significantly
advanced point cloud processing, enabling the use of photo
collections for synthesizing novel views and comprehensive
3D reconstructions. Polygonal meshes [6] and voxel-based
representations are essential for 3D reconstruction, offer-
ing seamless integration with graphics pipelines and sim-
plifying volumetric data handling, respectively, crucial for
rendering detailed surfaces and complex internal structures.



Recently, Neural Radiance Fields (NeRF), introduced by
Mildenhall et al. [7], utilize a fully connected neural net-
work to encode a scene’s volumetric density and color infor-
mation, facilitating the synthesis of novel views from sparse
datasets.

Gaussian Splatting. Gaussian reconstruction kernels,
first proposed by Westover [12], provide an innovative al-
ternative to traditional mesh and point cloud representations
for capturing 3D object geometry. This method has been
further applied by Rhodin et al. [9] and Wang et al. [11] for
rendering isolated objects within 3D reconstruction frame-
works. Building on these foundations, the seminal work by
3DGS [5] introduced a breakthrough approach, enabling the
comprehensive reconstruction of complex scenes, includ-
ing background elements, using 3D Gaussians. Following
this significant advancement, subsequent optimizations and
enhancements have been made in both quality and speed
by developments such as Mip-Splatting [13], 3DGS-Avatar
[8], and Gaussian Surfels [2], further solidifying the role of
Gaussian models in modern 3D reconstruction techniques.

3. Approach
We modified the 3D gaussian splatting codebase [5] to

implement a renderer using ray-tracing.
We created two ray-tracing based renderers to render

gaussian splats: one software ray tracer using CUDA, and
one hardware-accelerated ray tracer using the Nvidia Op-
tix 8.0 API. During development, we had another separate
hardware-accelerated approach which did not work well.
One key challenge to achieving high performance when ren-
dering Gaussians splats is the need to sort the intersected
Gaussians based on depth order due to the need for in-order
opacity composing. Below, we first describe the successful
implementations of the two methods, which both implement
Ray-AABB (axis-aligned bounding boxes) intersections on
Gaussians represented as AABBs, but solve sorting differ-
ently. Then, we describe opacity composing to compute the
final color for each pixel. Finally, we describe the iterations
we made towards these solutions and describe the attempt
which did not work well.

3.1. AABBs from Gaussians

We fit AABBs for each gaussian which encompass 99%
of the gaussian’s density. The axes of the ellipsoid repre-
senting a 3D gaussian can be obtained from the eigenvec-
tors of the covariance matrix. We scale each eigenvector by
three times its eigenvalue to obtain the axis vectors for the
ellipsoid and surround all positive and negative axis vectors
with an axis-aligned bounding box. Conveniently, the co-
variance matrix of 3D Gaussians are represented as rotation
and scaling matrices, Σ = RSSTRT , so the eigenvectors

and eigenvalues can be obtained directly from the rotation
and scaling matrices of each gaussian.

3.2. CUDA Ray Tracer

We construct a BVH to query ray-AABB intersections.
We construct the BVH using CUDA with a parallel algo-
rithm based off of constructing binary radix trees using
Morton codes [4]. For a renderer, the performance of BVH
construction is not critical, as the BVH is fixed per-scene
and is only constructed once.

During BVH traversal, we construct one ray per pixel
and parallelize using one CUDA thread per ray. Each thread
individually performs BVH traversal to collect all AABBs
which intersects the ray. To minimize execution divergence,
we implement BVH traversal using a stack as opposed to
a recursive implementation. To improve memory perfor-
mance, each thread stores its stack structure in thread local
shared memory, and we fix the stack size per thread to 1024,
which becomes the upper bound of the number of Gaussians
a single ray can intersect with.

After all intersected Gaussians are collected, we syn-
chronize threads within a thread block to minimize execu-
tion divergence. Each thread block contains a 2x2 pixel
patch of rays. This minimizes data divergence since rays
that are closer together traverse the BVH in a more simi-
lar order. Then, we sort Gaussians by depth order with the
Thrust API, which uses radix sort. Finally, we synchronize
threads once again after sorting and compose Gaussians to
compute color, all within a single fused kernel.

3.3. Hardware Accelerated Ray Tracer

The programming model provided by Nvidia Optix 8.0
involves constructing an acceleration structure and writ-
ing shaders with pre-specified functions defined by the
API whose scheduling are abstracted away by the API. On
Nvidia GPUs which support RTX Ray Tracing, hardware-
accelerated acceleration structure construction and ray trac-
ing are utilized during host and shader API calls. Our
implementation constructs an AABB acceleration structure
and implements the raygen shader, intersection shader, and
closest hit shader.

The raygen shader constructs rays and calls API func-
tions to trace rays in the scene, using a handle to the ac-
celeration structure. The intersection shader computes ray
AABB intersection times. The closest hit shader is trig-
gered on the AABB with the closest intersection time for
a single ray. To implement sorting, for each ray, we itera-
tively query for the closest AABB intersection, update the
ray origin to past the closest intersection, and repeat until no
more intersections remain. The resulting intersected Gaus-
sians will be in depth sorted order. Then, we use a separate
kernel launch for color computation.



3.4. Color Computation

In this section, we describe the methodology for alpha
compositing used to determine the visual characteristics of
intersections between multiple 3D Gaussian distributions
and a ray traced through the scene. The equation for a ray
can be expressed as Equation 1, where t is a scalar denoting
the position along the ray. We use tbounds to represent the t
where Gaussian’s bounds intersect with the ray.

R(t) = ray pos + t · ray dir (1)

3.4.1 Alpha compositing for 2D Guassians

Initially, we apply the alpha compositing technique to ren-
der 3D Gaussian splats as described in [5]. Specifically,
we project these 3D Gaussian splats onto a 2D, ensuring
their compositional accuracy through depth-ordered alpha
compositing. This process arranges the splats from front to
back. To optimize Gaussian sorting, we employ GPU radix
sort and allocate shared memory, which reduces the reliance
on global memory operations.

In the rendering of volumetric data, the accumulated
color C along a ray can be expressed as a summation over
the contributions from samples intersected by the ray, as
given by Equation 2, where N is the number of samples
along the ray; Ti and ci is the transmittance and color of the
sample respectively.

C =

N∑
i=1

Tiαici (2)

The α value quantifies the fraction of light absorbed by
the sample, with higher values indicating denser or thicker
samples, calculated using Equation 3. In this expression, ρ
denotes the density and w indicates the opacity of the Gaus-
sian sample. In the density ρ calculation, x is the current
point being calculated, µ and Σ represent the mean and co-
variance of the Gaussian, respectively. The distance metric
used in this equation is the Mahalanobis distance.

α = w · ρ

ρ = exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(3)

The transmittance Ti, which accounts for the cumulative
effect of light absorption by all preceding samples along the
ray, is computed as Equation 4. This recursive formulation
ensures that Ti represents the fraction of light that remains
unabsorbed upon reaching the i-th sample.

Ti =

i−1∏
j=1

(1− αj) (4)

3.4.2 Alpha compositing for 3D Guassians

Then we implement the alpha compositing in 3D space and
consider the overlapping 3d Gaussians. To perform alpha
compositing, we first sort the Gaussian distributions based
on their nearest intersection point with the ray. As the ray
progresses through intersections at the same spatial point of
multiple Gaussian blobs, we compute the resultant color by
aggregating the influence of each intersecting Gaussian. To
expedite calculations at each 3D position along the array,
we limit our evaluation to the nearest 10 Gaussians. This
approach is feasible because the Gaussians are pre-sorted
by their proximity to the intersection points, allowing us
to reasonably assume that more distant Gaussians are less
likely to intersect with the current point. After identify-
ing potential intersections with the nearest Gaussians, we
segment the tbounds by steping a fixed length along the ray,
facilitating a precise color computation at each segment.

For the spatial point where multiple Gaussian overlap,
each Gaussian’s contribution to the final color is determined
based on its properties. When calculating the density ρ for a
Gaussian that is segmented along the ray, the original den-
sity should be multiplied by the interval fraction of each
segment σ to determine the α, as shown in Equation 5.

It is essential that the calculation of the final color is not
influenced by the order in which Gaussians are processed.
Different from sequentially accumulating Gaussians at mul-
tiple depths or layers to get the pixel’s final color, here, all
Gaussians contribute at the same spatial point. Therefore,
we use a weighted average method based on the character-
istics of each Gaussian, detailed in Equation 6, to calculate
cumulative color. The total density at this point acts as a
normalization factor, ensuring that the resulting color truly
reflects the combined effect of all overlapping Gaussians.

At the point of overlap, the combined alpha value is de-
termined by the highest opacity among the intersecting ob-
jects, as indicated in Equation 7, assuming the most opaque
object dominates the visibility. Then we utilize this α value
to blend with other Gaussians at different layers using the
approach in Equation 2.

α = w · ρ · σ (5)

C =

∑N
i=1 ρiαici∑N

i=1 ρi
(6)

αfinal = max(α1, α2, ..., αn) (7)

3.5. Iteration and Failed Attempt

A few key performance lessons learned from tuning per-
formance of the CUDA ray tracer include: (1) recursion
causes high execution divergence, (2) keeping local mem-
ory within a thread in shared local memory by tuning thread



block dimensions is important, (3) syncing threads when
thread have variable workloads can greatly minimize exe-
cution divergence, and (4) fusing kernels removes the need
for a relatively slow store and load to global memory and
keeps computation within fast shared memory.

The first iteration of the hardware-accelerated ray tracer
used the same idea as the CUDA ray tracer, in that we use
the ray tracer to collect all intersections, but not sort them.
This was implemented using the any hit shader from the
Optix API. As expected, collecting all intersections using
hardware-acceleration was extremely performant, but un-
fortunately the global memory costs required for radix sort-
ing was very expensive. Radix sorting required creating key
value arrays for all Gaussians intersected per ray, which re-
sulted in 109 elements for the stump scene. One lesson
learned when writing to global memory from the any hit
shader is that the indexing and layout of global memory
greatly affects global memory write performance. We leave
it to future work to explore whether there is a more efficient
global memory layout to more performantly construct radix
sort keys and values.

4. Evaluation and Results

Our goal from the start of this project was to explore the
feasability of using ray-tracing as a technique for rasteriz-
ing Gaussian splats. We define feasability as having equal
or faster run-time than the rasterizing method used in the
3DGS paper [5]. We hypothesized that a rasterizer’s per-
formance is proportional to the number of primitives in the
scene, Gaussians in our case, and a ray tracer’s performance
is proportional to the number of pixels being rendered, so
we hypothesized that a ray tracer could exceed a rasterizer’s
performance when rendering a small number of pixels. To
verify this hypothesis, we conduct experiments which mea-
sure runtime performance in scenes with varying number of
primitives and varying number of pixels, using the 3DGS
rasterizer as the baseline.

Additionally, we hypothesized that our renderer, like the
baseline rasterizer from the original 3DGS paper, is capa-
ble of optimizing Gaussian splats for scene representation
through gradient descent, and achieving comparable results.
To determine whether this is true, we conduct experiments
comparing the visual quality of scenes optimized with our
renderer and optimized with the baseline rasterizer.

4.1. Performance Evaluation

For runtime experiments, we evaluate the CUDA ray
tracer, hardware-accelerated ray-tracer, and the rasterizer
renderer used by the original 3DGS implementation [5] on
pre-trained scenes from the Mip-NeRF 360 dataset [1]. The
3DGS rasterizer serves as the baseline. The metric we use
for performance is runtime for rendering a single frame of

0 0.2 0.4 0.6 0.8 1

·106

0

1

2

3

Number of pixels

R
un

tim
e

(s
)

Rasterizer
Hardware-accelerated ray tracing

CUDA ray tracing

Figure 1. Runtime performance of rendering methods for varying
pixel resolutions.

the scene. All runtime experiments were conducted on an
Nvidia Tesla T4 GPU. The runtime vs. number of pixels
and runtime vs. number of Gaussians experiments use the
scene stump, which contains 4,961,797 Gaussians and has
an aspect ratio of 1245:856.

Runtime vs. number of pixels. We evaluate runtime
while varying the number of pixels being rendered while
keeping the aspect ratio constant. In Figure 1, we ob-
serve a linear relationship between number of pixels and
runtime for ray-tracing based renderers, while the raster-
izer maintains near-constant runtime. These results make
sense since the number of rays is directly proportional to
the number of pixels, so naturally there would be a lin-
ear performance relationship. The rasterizer, on the other
hand, is dominated by the computational costs of rasteriz-
ing each gaussian in the scene, which is why we see near-
constant performance when varying the number of pixels.
The CUDA ray tracer has much higher linear scaling com-
pared to hardware-accelerated ray tracing; we speculate that
this may be due to inefficiencies in thread grouping and
scheduling, and inefficiencies per ray-BVH traversal lead-
ing to much higher constant factors in runtime complexity.
To compare the hardware-accelerated ray tracing and raster-
izer and estimate the crossover point for the performances
of ray tracing versus the rasterizer, we fit a linear model to
the runtime data for both methods and compute the num-
ber of pixels for which the linear models intersect. We find
that the hardware-accelerated ray tracing renderer performs
better when there are fewer than 416600 pixels to be ren-



0 1 2 3 4 5

·106

0

0.2

0.4

0.6

0.8

1

Number of Gaussians

R
un

tim
e

(s
)

Rasterizer
Hardware-accelerated ray tracing

CUDA ray tracing

Figure 2. Runtime performance of rendering methods for varying
number of Gaussians in the scene.

dered, which is a resolution of approximately 778x535 for
this scene.

Runtime vs. number of Gaussians. We evaluate runtime
while varying the number of Gaussians in the scene through
randomly sampling a subset of Gaussians and rendering
596x410 pixels. We choose a resolution of 596x410 to illus-
trate how the hardware-accelerated ray tracer and rasterizer
scale more clearly by choosing a resolution at which the two
methods perform similarly. In Figure 2, we observe linear
scaling for all three rendering methods. Like before, the
CUDA ray tracing method has much higher linear scaling,
likely due to the inefficiencies mentioned before. We also
note that the rasterizer has higher linear scaling compared
to the hardware-accelerated ray tracer. This makes sense
since the work in the rasterizer is dominated by rasteriz-
ing each gaussian, whereas in the hardware-accelerated ray
tracer, only the BVH acceleration structure and ray inter-
section queries scales with the number of gaussians, which
only scales logarithmically in time complexity.

Baseline performance comparison. To evaluate the per-
formance on scenes from MiP-NeRF 360 in their default
configurations, we evaluate performance on different scenes
by running the our renderers, plus the rasterization baseline,
on the following six pre-trained scenes at default test con-
figurations: stump, bicycle, bonsai, counter, garden, and
kitchen. In Figure 3, we visualize the runtime differences
for each method per scene. For scenes with larger number
of Gaussians such as stump, bicycle, and garden, the perfor-

stu
mp

49
61

79
7

bic
yc

le
61

31
95

4

bo
ns

ai
12

44
81

9

co
un

ter
12

22
95

6

ga
rde

n
58

34
78

4

kit
ch

en
18

52
33

5

0

1

2

3

0.16 0.2
0.05 0.05

0.19 0.14
0.3

0.42 0.5
0.74

0.32

0.75

3.1

1.88 1.87

2.41

1.38

2.84

Scene {Number of Gaussians}
R

un
tim

e
(s

)

Rasterizer
Hardware-accelerated ray tracing

CUDA ray tracing

Figure 3. Runtime performance of rendering methods for various
scenes

mance gap between rasterizer and hardware-accelerated ray
tracing shrinks and the performance gap is approximately
∼ 2×. However, for smaller scenes, we see a performance
gap of up to ∼ 10×. These results are consistent with the
findings from Figure 2, since the rasterizer has a higher lin-
ear constant scaling factor in the number of Gaussians in
a scene compared to the rasterizer, so the performance gap
between the two methods close as the scenes contain more
gaussians. Additionally, it is expected and consistent with
the findings from Figure 1, that the rasterizer performs bet-
ter in default configurations due to the large number of pix-
els being rendered of approximately 1 million pixels.

4.2. Optimization Evaluation

We evaluate the capability of our renderer in optimizing
Gaussian splat scene representations through gradient de-
scent. Motivation for retraining the Gaussian splat scene
representation using our renderer, rather than simply using
the pretrained scenes, can be found in Figure 4. In this fig-
ure, we show views of a pretrained model (provided by [5])
of the stump scene, rendered using our renderer, and the
baseline 3DGS rasterizer renderer. We provide the ground



Ground truth Ours Rasterized

Figure 4. Renders of the stump scene using the pretrained Gaussian splat scene from 3DGS [5]. We show the ground-truth view, a rendering
from the same view using our renderer, and a rendering from the same view using the baseline 3DGS rasterizer.

G
ro

un
d

tr
ut

h
O

ur
s

Figure 5. Test views of stump scene optimized using our renderer, compared to ground truth.

truth view for comparison. We can see that our result, while
mostly reasonable, exhibits more visual artifacts than the
rasterized result—in particular, notice that the grass near the
foot of stump exhibits artifacts. The fact that the rasterized
image is of higher visual quality is unsurprising, since the
pretrained model was optimized using the rasterizer. There-
fore, our hope is that by training the scene using our ren-
derer instead, we can achieve higher visual quality, compa-
rable to the rasterized result.

To this end, we implement the corresponding backward
pass to our renderer, and use our renderer to retrain scenes
from Mip-NeRF360 from scratch using gradient descent.
For our experiments, we train each scene for 30k epochs
on a NVIDIA GeForce RTX 3090 GPU, using the default
hyperparameters of [5].

In Figures 5, 6, and 7, we show example qualitative
results of training with our renderer on the scenes stump
and bonsai respectively. For each scene, we show several
ground truth test views alongside rendered results of our

optimized scene from the same views. We note that qualita-
tively, our results look reasonable and show a preliminary
feasibility of this approach, but exhibit some limitations.
Most noticeably, our results appear “farsighted,” with ob-
jects in the background appearing high-fidelity, but objects
closer to the camera appearing blurrier. In particular, note
that in Figure 6, we are able to reconstruct the spokes of the
bike wheel, but that the bonsai tree flowers remain blurry.
The limitations in visual quality are also borne out by the
PSNR metrics shown in Table 1, where our method unfortu-
nately underperforms compared the rasterizer-trained base-
line.

We are not entirely sure what causes this “farsighted”
effect, but it may be due to suboptimal choice of hyperpa-
rameters or other elements of the optimization strategy. We
are optimistic that it is indeed possible to achieve higher vi-
sual quality by finetuning and improving the optimization
strategy, for two reasons. First, our results, while not per-
fect, are at least reasonable, and show improvement over the



G
ro

un
d

tr
ut

h
O

ur
s

Figure 6. Test views of bonsai scene optimized using our renderer, compared to ground truth.

G
ro

un
d

tr
ut

h
O

ur
s

Figure 7. Test views of garden scene optimized using our renderer, compared to ground truth.

training epochs, showing that at least some optimization is
possible. Second, as shown in Figure 4, our renderings of
the pretrained scene, while exhibiting some artifacts, do not
exhibit the same noticeable blurriness issue that we observe
when retraining from scratch. This points in the direction
that a Gaussian splat scene representation without this blur-
riness issue when seen by our renderer exists, and that it is
just up to improving the optimization strategy to be able to
find it.

We make an additional note about training time. We ob-
serve that our training time is roughly ∼5x the training time
using the rasterizer, and that most of this is attributable to

the building of the BVH, which is done for every iteration.

5. Conclusion
This work demonstrates the feasibility of employing ray

tracing for rendering 3D Gaussian splats, displaying ad-
vantages over traditional rasterization under specific condi-
tions. Our analysis quantifies performance metrics across
varying pixel counts and Gaussian densities in complex
scenes. The results indicate that ray tracing exhibits lin-
ear performance scaling with pixel count and outperforms
rasterization particularly in high-complexity scenes with
a large number of Gaussians but fewer pixels. We also



PSNR (↑)
Scene Ours Rasterized
stump 21.69 25.99
bonsai 25.85 31.98
garden 22.80 27.41
room 22.58 30.63
counter 23.14 28.7
bike 20.45 25.25
Average 22.75 28.33

Table 1. PSNR for our optimized scenes compared the pretrained
3DGS scenes optimized with rasterizer.

demonstrate the preliminary feasibility of using our ren-
derer to train Gaussian splat 3D scene representations from
scratch. We expect that as GPU technologies advance, the
efficiency and applicability of ray tracing for rendering 3D
Gaussian splats will continue to improve, making it a com-
pelling alternative for rendering.

5.1. Future Work

There remain opportunities to investigate to further im-
prove ray-tracing performance of rendering Gaussian splats.
Newer hardware aimed towards achieving real-time ray
tracing performance in games, which require tracing bil-
lions of rays per second, continue to improve ray-tracing
support; we expect that these hardware improvements will
readily translate to hardware-accelerated ray-tracing perfor-
mance for Gaussian splats. We also note that the need to
sort Gaussians in depth order removes opportunities to par-
allelize ray intersections for a single ray and the need for
iterative closest hit queries increases runtime significantly.
To gain more ray query parallelism, one technique worth
exploring is to split a ray into disjoint segments and query
each segment in parallel. It may also be worth re-visiting
using the any hit shader with Optix 8.0 to collect all inter-
sections and sort with radix sorting.

For optimization of Gaussian splats using ray tracing,
improving the currently shown limitations on visual qual-
ity, possibly by experimenting with optimization strategy
and hyperparameter tuning, is an important direction for fu-
ture work. Another interesting avenue for future work is
improving the training time. Currently, the BVH is rebuilt
at every iteration, and this comprises the majority of the
training time. Future work might explore methods for train-
ing where the BVH only needs to be rebuilt every so many
iterations, or where it is optimized directly.

6. Team Responsibilities
Alex Lin: CUDA ray tracer and hardware-accelerated

ray tracer’s BVH + ray-gaussian intersection implementa-
tion; performance runtime experiments.

Meijin Li: alpha compositing for 2D and 3D Gaussians
respectively (effort but unresolved in 3D); use GPU radix
sort and shared memory to facilitate rendering.

Yvette Lin: Implemented backward pass for renderer
and performed training/optimization experiments.

References
[1] J. Barron, B. Mildenhall, D. Verbin, P. Srinivasan, and

P. Hedman. Mip-nerf 360: Unbounded anti-aliased neural
radiance fields, 11 2021.

[2] P. Dai, J. Xu, W. Xie, X. Liu, H. Wang, and W. Xu. High-
quality surface reconstruction using gaussian surfels. arXiv
preprint arXiv:2404.17774, 2024.

[3] M. Goesele, N. Snavely, B. Curless, H. Hoppe, and S. M.
Seitz. Multi-view stereo for community photo collections.
In 2007 IEEE 11th International Conference on Computer
Vision, pages 1–8. IEEE, 2007.

[4] T. Karras. Maximizing parallelism in the construction of
bvhs, octrees, and k-d trees. pages 33–37, 06 2012.

[5] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis.
3d gaussian splatting for real-time radiance field rendering.
ACM Transactions on Graphics, 42(4), July 2023.

[6] W. E. Lorensen and H. E. Cline. Marching cubes: A high res-
olution 3d surface construction algorithm. In Seminal graph-
ics: pioneering efforts that shaped the field, pages 347–353.
1998.

[7] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron,
R. Ramamoorthi, and R. Ng. Nerf: Representing scenes as
neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

[8] Z. Qian, S. Wang, M. Mihajlovic, A. Geiger, and S. Tang.
3dgs-avatar: Animatable avatars via deformable 3d gaussian
splatting. arXiv preprint arXiv:2312.09228, 2023.

[9] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and
C. Theobalt. A versatile scene model with differentiable vis-
ibility applied to generative pose estimation. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 765–773, 2015.

[10] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-
ploring photo collections in 3d. In ACM siggraph 2006 pa-
pers, pages 835–846. 2006.

[11] A. Wang, P. Wang, J. Sun, A. Kortylewski, and A. Yuille.
Voge: a differentiable volume renderer using gaus-
sian ellipsoids for analysis-by-synthesis. arXiv preprint
arXiv:2205.15401, 2022.

[12] L. Westover. Footprint evaluation for volume rendering.
In Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, pages 367–376, 1990.

[13] Z. Yu, A. Chen, B. Huang, T. Sattler, and A. Geiger. Mip-
splatting: Alias-free 3d gaussian splatting. arXiv preprint
arXiv:2311.16493, 2023.


